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SUMMARY

Equations have been derived, using vector analysis, which pre-

dict the incident energy at any given point on an earth satellite. The

derivation is based on a non-spinning satellite and extended to include

spinning vehicles. The satellite was assumed to be oriented in any

one of three ways - toward the sun, toward the earth, and tangent to

the flight path at perigee. The amount of energy received depends

upon the intensity of the radiation and the view factor between the

object and source. The view factor equations are applicable to any

mathematically describable shape. To determine the length of ex-

posure to the sun, simple relations have been developed which pre-

dict the ingress and egress points of the earth's shadow. The

solution to the equations was programmed in a general manner on

an IBM 7090. The input data required consisted of parameters to

specify the orbit and an equation to describe the surface of the

satellite. As an illustration a cylindrical satellite with hemispherical

ends was chosen, The view factor equations were derived and

numerically integrated, and the incident energy was calculated for an

arbitrarily selected orbit. The results indicated that spinning reduces

the peak heat fluxes in all cases, and the minimum incident energy

occurred when the vehicle was oriented toward the sun.

The methods outlined in this report are applicable to satellites

of other celestial bodies also. The only additional information

required is a knowledge of the position of the sun and the orbital

plane relative to the body.
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INTRODUCTION

One of the major problems encountered in the operation of

manned and unmanned space vehicles is heating by thermal radiation.

The net heat received by the satellite may be controlled by many

methods, both active and passive. For example, the vehicle may be

oriented to obtain the minimum incident energy, or it may be shielded

and insulated to reduce the heating, or a combination of these methods

may be used. This report will consider the thermal advantages to be

gained by minimizing the incident energy through vehicle orientation.

For a spinning satellite, the problem is simplified somewhat since

the incident energy is uniformly distributed about the spin axis. This

fact will be used to determine the irradiation of a spinning satellite

from the analyses of the non-spinning vehicles.

An object in orbit about the earth receives significant amounts

of radiant energy from three sources - direct solar radiation, earth

radiation, and albedo or earth-reflected solar energy. As long as the

satellite is near the earth it will always receive appreciable amounts

of terrestrial radiation. However, it may or may not be receiving

heat from the remaining two sources depending on the relative position

of the earth, the sun, and the satellite. The amount of heat received

from each source depends on the intensity of the radiation and the

view factor between the object and the source. Equations for the view

factors will be derived for any mathematically describable shape

traveling in a circular or elliptical orbit. These equations will in-

clude three possible vehicle orientations - earth-oriented, sun-

oriented, and tangent to flight path at perigee. To determine the

length of exposure to the solar heat source, equations will be derived

which give the points of ingress and egress of the earth's shadow.

The use of these methods will be illustrated by sample calculations

for a cylindrical satellite with hemispherical ends and a verification

obtained for certain simple cases.
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DEFINITION OF SYMBOLS

= semi-major axis of orbit ellipse

= semi-major axis of earth's shadow ellipse

= total surface area of radiant heat source

= total surface area of body receiving radiant energy

= finite area increments of satellite surface

= average albedo of a planet

= semi-minor axis of earth's shadow ellipse

= number of days after vernal equinox

= diameter of a cylindrical satellite

= differential surface area on the radiant heat source

= differential surface area on the body receiving radiant

energy

= differential area increment of irradiated surface

= differential radiant heat flux from dA1 to dA2

= eccentricity of orbit ellipse

= radiation view factor between the earth and the satellite

area, Azi

= radiation view factor for a flat plate parallel to a

planet's local horizon

= radiation view factor between the satellite area A2i

and earth-reflected solar energy
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DEFINITION OF SYMBOLS (Continued)

= radiation view factor between the satellite area A21 and

the sun

= radiation view factor for a flat plate vertical to the

local planet horizon

= general mathematical function defined as

g(X4, Y_, X_) = 0

= altitude of a satellite above a planet's surface

= inclination of orbital plane to earth's equatorial plane

= intensity of earth-reflected solar energy

= intensity of planetary radiation

= total energy radiated per unit time and area by the

earth

= intensity of radiation between the earth and the satellite

= unit vectors along the coordinate axes of a rectangular

cartesian coordinate system

= 2.206 × I0_ (KM) z (constant)

= 1.580570 × I0 q (KM) 4 (constant)

= length of cylindrical part of satellite

= right ascension of sun in plane of ecliptic

: local sidereal time

= North

= unit vector normal to surface of heat source

= unit vector normal to satellite surface



DEFINITION OF SYMBOLS (Continued)

P

P

Ql -_2

Q-_-_zi

Qp

QR

QS

R

RE

Rp

R
s

rlz

S

S

$I, Sz, $3

Zl

W

X

X, y, Z

= period of orbit

= semi-latus rectum of orbit ellipse

= incident radiant energy from body l to body g

= incident radiant energy from earth to satellite area

Az i

= incident energy from a planet

= earth-reflected solar energy incident on area Az

= solar energy incident on area _Az

= radius from center of earth to the satellite

= radius of the earth = 6378. 150 ± 0.070 (km)

= radius of perigee

= radius from center of earth to any point on the earth' s

shadow ellipse

= radius vector from earth surface element to satellite

surface element

= solar constant 443 Btu/ft z hr -+-2%

= unit vector from center of earth directed toward sun

location

= scalar components of solar vector along the X I, Xz, X3

coordinate axis, respectively

= black body equilibrium temperature of the earth

= West

= a coordinate of a rectangular cartesian system

= rectangular cartesian coordinate system
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DEFINITION OF SYMBOLS (Continued)

= vector operator "del"

= right ascension of sun in plane of equator

= spherical angle in launch triangle (FIG 6)

= spherical angle in perigee triangle (FIG 6)

= angle in the plane of orbit, measured clockwise from

perigee to the projection of the sun into the orbital

plane (FIG 9)

= declination of the sun

= angle between unit surface normal to radiating surface

and vector, rlz (FIG Z)

= angle between the unit normal to the surface of the object

receiving radiation and the vector, r-_z (FIG Z)

= angles between unit normals to the earth and sun

= angle between unit normals to the satellite and the sun

(FIG 4)

= latitude of launch site

= latitude of initial perigee point

= obliquity of the ecliptic - 23 ° 27' 8.2"

= angular coordinate on cylindrical satellite (FIG 15)

= geocentric angular coordinate for position description

on the earth's surface {FIG 2)

= geocentric angular coordinate for satellite location

(FIG 3)
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DEFINITION OF SYMBOLS (Continued)

= angular measurement in the plane of orbit (FIG 12)

= geocentric angular coordinate for position description

on the earth's surface (FIG 2)

= geocentric angular coordinate for satellite location

(FIG 3)

= angle subtending a side of launch spherical triangle

(FIG 6)

= angle subtending a side of launch perigee spherical

triangle (FIG 6)

= spherical coordinate (FIG 17)

= true anomaly (FIG 8)

= angle between the normal to the plane of orbit and the

sun vector (FIG 9)

= constant 3. 1416

= spherical coordinate (FIG 17)

= radius of planet

= Stefan-Boltzman constant -. 174 xl0 -8 gtu/hr ftz (R°) 4

= spherical coordinate (FIG 16)

= spherical coordinate (FIG 16)

= right ascension of ascending node

= regression rate of ascending node

= side of launch spherical triangle (FIG 6)
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1,2,3

4,5,6
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I0, 1I, 12
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16, 17, 18

19, 20, 21

Z2, Z3, Z4

E.O.

P

S.O.

DEFINITION OF SYMBOLS (Concluded)

,, argument of perigee

- advance of perigee

Coordinate Subscripts

earth centered triad (FIG Z)

= satellite coordinate system (FIG 5)

= system given by first rotation in equatorial plane

= orbital plane triad

= earth-oriented triad

= system given by first rotation to align with the sun

(FIG 10)

= sun-oriented system

-- positive hemisphere system

= earth-oriented system

= perigee system

= sun-oriented system
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RADIATION HEAT TRANSFER

In this section, equations will be developed which predict the

thermal energy incident on the satellite. The analysis will be made

for a non-spinning vehicle and then extended to include the spinning

satellite. The irradiation will be assumed to be independent of wave-

length and angle of incidence. It is convenient to use the celestial

sphere concept which assumes that the earth is stationary and the

heavenly bodies revolve about it. Two rectangular cartesian co-

ordinate systems will be employed: one moving with the satellite,

but fixed relative to it, and a geocentric equatorial system. By

calculating the maximum heating that could be received by an earth

satellite, it will be shown that only the earth and sun contribute

significant amounts of thermal radiation.

Consider two diffusely radiating surface elements dA I and dAz,

as shown in FIG l, which are separated by a non-absorbing medium.

The radiation emitted from dA 1 and striking dAz is

dql-_ -_z , Ilz" cos Y: cos Yz dAl dAz (1)
Ir- zI2

where I12 is the radiation intensity. The angles Y: and Yz are

the angles between the respective normals and a line connecting the

two elements. The total radiation received per unit time by area A2

from A: is

-_ l l -_ cos Y: cos Y2
QI -_z = j I12 dA] dAz (2)

Or assuming that AI is a black body at temperature T:, then

"_Q_-_2 - ¢T_4 f Af2 c°s V' c°s V2 dA'dAze" A1 [4r :2 [ 2 {3)
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and the limits of integration are cos Yl --> 0, cos Yz --> 0 (4)

A. EARTH PLANETARY RADIATION

If area dA1 represents an elemental area on the surface of

the earth and dA2 is the satellite area as shown in FIG 2, then

--m -_

cos YI = rlz NI (5)

and

cos %/2 =
-rlz N2 (6)

where the unit normal to the earth's surface is

NI = sin _l cos 01 (il) + sin r_1 sin 01 (i2) q- cos n, (i3) (7)

and the elemental area is given by

dA 1 = RE 2 sin r_1 d_ 1 d@l (8)

The position of the satellite relative to the earth is given by the

vector R, as shown in FIG 3, and is defined in terms of the geo-

centric angles _]zand Oz. If the magnitude of R is denoted as R

then the vector r12 from the earth's surface to the satellite is

rlz = (R sin _z cos @z - R E sin HI cos _i) (il) +

(R sin nz sin O2 - R E sin nl sin OI) (iz) + (9)

(R cos n2 - R E cos Hi) (i3)
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The area dAz on the satellite will depend on the particular shape of

the vehicle and will be defined later.

The only vector as yet undetermined is the satellite unit normal.

Let X4, Xs, X 6 represent the coordinate axes of a rectangular

cartesian coordinate system which moves with the satellite. This co-

ordinate system is fixed relative to the satellite and chosen to give

the simplest mathematical description of the satellite surfaces.

The general equation of the satellite surface would be

g(X4, X_, X_) = 0 (lO)

and its unit normal at any point is

with the sign chosen so that Nz is always directed outward from the

surface.

The integration of equation (3} may be simplified by studying

the functional dependence of the vectors on area Az. rlz is not a

function of position on the satellite surface, since even for a 100-

foot satellite in a low orbit (100 miles), the differences in rlz at

extreme points on the satellite are negligible. Also by subdividing

the satellite surface into increments (A2i) over which the

direction of the unit normal is constant, the cos Yz is made piece-

wise independent of .A2. The equation for the energy received by

A2i from the earth is

--_ or T14 Az_i dAzi A1_ cos Y1 cos Ya dA 1Q,- i - . i,: 1 (12)

or

Ql_z i = CTI 4 Az i Fzl (13)
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where Fzl is the view factor defined as

1 f cos Y1 cos Yz dA,
F21 = FE - 7r [r--_2[ 2

(14)

Additional information concerning the definition of the view factor is

given in Appendix A.

To apply equation (13) the surface temperature of the earth must

be determined. For a given point on the earth the temperature varies

with the time of day, season and atmospherical conditions, thus

making it impossible to use the Stefan-Boltzman Law. However, it

is possible to compute the total energy radiated by the earth by

means of an energy balance, independent of these variables, and

obtain a mean effective temperature. The thermal energy incident

on the earth consists almost entirely of solar radiation. Since the

sun is so far from the earth, it can be considered as a point source

emitting radiation which impinges on the earth in parallel lines.

The intensity of this solar energy is called the solar constant, S,

and is based on the irradiation of a flat plate normal to the sun's

rays at the earth's mean distance from the sun. The net energy

absorbed by the earth is the difference between the incident solar

radiation and the fraction that is reflected as defined by the albedo.

Since the mean temperature of the earth and its atmosphere does not

vary appreciably over extended periods, it may be concluded that

this absorbed energy is in turn reradiated. Both the solar constant

and average albedo, _, are reasonably well known for the earth

so that this reradiated energy can be readily evaluated. If It is

the total energy radiated per unit area and time, the energy balance

is

(1- A) S_RE 2 = 4_RE 2 It (15)

This assumes that all the surface of the earth is radiating with the

same intensity as a black body; therefore

(i
It = 0-Tl 4 = - S

4
(16)
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The most accurate value for the solar constant is that given by
Johnson (Reference I), as

Btu
S = 443 + 9

it _ hr

and the average albedo is 0. 40 (Reference 2). Substituting these

values into equation (16) gives a mean effective temperature for the

earth of 443. 5°R, and an intensity of 66. 36 Btu/hr-ft z.

B. SOLAR RADIATION

Since the irradiation of a flat plate normal to the sun's

rays is known (solar constant), it is easy to find the incident energy

on any flat surface. The amount of heat received will be proportional

to the projected area in the direction of the sun. For example, if

the unit normal to the area Azi makes an angle ¥zs with the sun's

rays, as shown in FIG 4, then the radiation received from the sun

would be

Qsi = S cos ¥zs Azi (17)

From the form of the above equation, and the definition of a view

factor, as explained in Appendix A, it can be seen that the solar view

factor is

F s = cos Yzs = S Nz (18)

where

S = S, (ii) + Sz (iz) + $3 (i3) (19)

C. ALBEDO RADIATION

The third source of energy irradiating the satellite is earth-

reflected solar energy. Neglecting the atmosphere, the amount of

solar energy incident on the earth per unit time and area would be
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18

S cos Yls (20)

where

cos YIs = S NI (21)

However, all of this energy is not absorbed; some of it is reflected

back to space. The average fraction reflected is defined as the

albedo and accounts for the actual reflected radiation regardless of

the cause of its reflection. Therefore, the amount of the energy

returned to space, per unit time and area, by the earth would be

AS cos Y,s (22)

If the energy is reflected diffusely according to Lambert's Cosine

Law then the intensity in any direction is

IR

m

A S cos Y1s

7r
(23)

The amount of this energy received by the satellite can now be

computed in a manner similar to direct earth radiation. The only

difference is the intensity of the radiation. Such an approach gives

QRi = S A Azi FRi (24)

where

FRi - _rl f cos Yls ]r-_zlzC°SY1 cos Yz dA1
(25)

and the limits of integration are

cos Yz > 0 cos YI > 0 cos Yls > 0 (26)
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The limits of integration given by equations (4) and (2-6) deter-

mine whether or not a surface is receiving radiation. Specifically,

the limit cos 7 > 0 means that a given element of area on the1 --
earth is in a position to emit energy to a particular satellite location.

If the cos 72 is positive, this means that the element of area on

the satellite is in a position to receive the radiation. The limit on

cos 71 insures that the earth surface area element is irradiated
by the Sun and therefore should be considered when summing the

reflected solar energy.

D. OTHER CELESTIAL SOURCES

To determine whether or not the radiation from a nearby

celestial body should be considered, the maximum possible heating

loads were calculated. At any given altitude above a planet this

maximum incident energy would occur on a flat plate which is

parallel to the local planet horizon. The view factor between the

plate and the planet is determined by Smolak' s equation (Reference 3}

and found to be

F H I L
1 +pp

(27)

The intensity of the planetary radiation is determined in a manner

similar to that previously described on Image 16. The albedo values

are taken from Reference 2 and listed with the calculated intensitis

in Table i. The incident thermal energy per unit area on a flat plate

parallel to the planet' s local horizon would be

Qp = Ip F H (28)

Table 2 gives the amount of incident energy for various

altitudes above the moon and the neighboring planets. It can be seen

that planetary radiation is negligible beyond 30,000 miles from the

surface of the bodies considered. Therefore, the only sources which

contribute significant amounts of thermal radiation to an earth

satellite are the sun, the earth, and albedo or earth-reflected solar

energy.
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TABLEi

Planetary Constants

Celestial
Body

I t
Btu/hr-ft 2

A

Earth

66.36

0.40

Moon

102.86

0.07

Venus

50.78

0.76

Mar s

40.48

0.15

TABLE 2

Planetary Radiation to a Flat Plate Parallel to the Planet's Local Horizon

h

(Statute

Miles)

q (Btu/hr-ft 2)
P

Earth Moon Venus Mar s

i00 63.0 86.4 48.3 36.7

500 52.0 48.5 39.7 26.2

I000 42.1 28.0 32.0 18.8

5000 13.0 3.17 9.48 3.48

I0000 5.33 I.O0 3.87 1.19

20000 1.88 0.274 1.30 0.357

30000 0.906 0.636

40000 0.538 0.386



21

E. SPINNING SATELLITE

Spinning the satellite causes the heating loads to be uniformly
distributed about the spin axis. To calculate the incident energy the
satellite is divided into segments which are bounded by planes per-
pendicular to the spin axis. The total irradiation of each segment is
then calculated for the non-spinning case and this value divided by the
exposed surface area of the segment. This solution assumes a
constant spin rate during any one revolution, which will usually be
the case. However, variable rates can also be accounted for by
weighting the averaging process.

ORBITAL PARAMETERS

The parameters which describe the satellite 's orbit and motion
will be given in this section. Spherical trigonometry will be used
to relate the launching conditions to the resulting orbit, and the
movement of the satellite in the orbital plane will be described in
polar coordinates. Because the earth is not a perfect sphere,
orbital parameters will not remain fixed but will experience per-
turbations, which will be accounted for by Krause's equations
(Reference 4).

As the vehicle travels in orbit it is assumed to be oriented in
any one of three ways: toward the earth, toward the sun, or tangent
to the flight path at perigee. In each case the vehicle will be assumed
to be capable of maintaining its orientation and not be influenced by
drag or electromagnetic forces. The prirr_ary interest here is in
the angular relations and not in expressing the coordinates of a point
in terms of the different coordinate systems; therefore, the trans-
position of the origins will be neglected, The equations relating
various unit vectors of the different coordinate systems are given
in detail in Appendix B, based on the analysis of this section.

The position of the sun relative to the geocentric coordinate
system will be derived and the attitude of the earthrs shadow.



22

cylinder I will be determined. Since the intersection of the orbital
plane and the shadow-cylinder describes an ellipse, the ingress and
egress points will be found by simultaneously solving the equations
for the orbital and shadow ellipses. Such an approach assumes that
the satellite is a point, which is a reasonable assumption for the
purposes of angular location.

The orbital plane is defined by the angle, i, which it makes
with the equatorial plane of the earth and the right ascension of the
ascending node, 12, as shown in .FIG 5. The position of the orbit in

its plane is given by the argument of perigee, co, measured from

the a.s_ending node to the perigee point.

The initial track of the satellite, on the earth's surface, is

illustrated in FIG 6, based on the assumption of a spherical earth

and a launch trajectory confined to the orbital plane.

To correlate the orbital and launch parameters, spherical

trigonometry is used. This method requires the solution of two

similar right spherical triangles. These triangles are formed by

the earth's equator and the track of the satellite, with the third

side being the meridian of longitude through either the launch site

or perigee projection. The launch triangle is solved first since two

of its parts are known. However, the known quantities here are the

inclination of the orbit, i, and the side opposite which is the latitude

of the launch site. This case is ambiguous, giving two possible

solutions; thus, a sketch should be drawn to interpret the results

properly. The spherical angle relations are

sin 6 L " sin i sin _L (29)

tan X L -- cos i tan col (30)

IActually the earth's shadow is a cone with an included angle of

0.53 ° and an apex located 746,800 nautical miles from the earth's

center (Reference 5). However, the cylindrical assumption is

practical since even at a distance of 10,000 nautical miles from the

earth the diameter of the cylinder would only be 80 nautical miles

more than the cone, or one percent of the earth's diameter.



23

/
/

/

/

/

\

\

\
\

\
\

\

\
\

\
\

\

\\

\
\

\

\

\

\

\
\

\

/

/

/
/

\
\

\

\
\

o

\
\

,\

\

o

°_,,I

4.1

,,-I

0

4_

.,-4

.1,.4

o

o
-,,-4
4.1



24

XI

North Pole

Cutoff 1 / -_
.... _/ I
Position _

Perigee

_- _rojection

/

Ascending
Node _/ _)L i

Projection ; ,
/ ",\ j

/ i . st
/

LST

Track of

Equinox

Pad

Figure 6. Pa£h of Satellite Projected onto the Earth's Surface



25

and

sin EL = sin X L csc _oL (31)

Using the above results, the parts of the spherical triangle with

the meridian of perigee as a side may now be found. The known

quantities are the angle of inclination, i, and the argument of perigee,

co, which is giverl by

•_o = -0_L + downrange cutoff (32)

The remaining relations are calculated by the following equations

which are similar to equations (29) through (31) above

sin 8 = sin i sin co (33)

tan k = cos i tan _o (34)

and

sin _p " sin I csc 0_ (35)

The date and time of launch appear in the determination of _,

since

e = LST - X L (36)

as can be seen from FIG 6. The angle, XL, is found from the solution

of the launch triangle, and Reference 6 gives the local sidereal time,

LST.

The polar form of the equation of an ellipse which is

R " a(1 - e z) (37)
I + e cos u
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will be used to describe the position of the satellite in the plane of

orbit. The angle, w, is called the true anomaly and is measured

counterclockwise from perigee. The radius is measured from the

perifocal point to the satellite. In the case of an earth satellite the

perifocal point is chosen at the center of the earth and the radius,

R, as shown in FIG 3. The eccentricity of the ellipse is e, and a is

the semi-major axis length.

Because of the oblateness of the earth, the perigee and nodal

locations do not remain fixed but vary according to the equations

given below (Reference 4). The location of the ascending node will

change with time according to

f2 = f_)initial passage + (Number of days sincel _of the satellite initial passage of the

satellite

where

(38)

and

27r5-
P K2(24) cos i 3 (T)2

(1- --74 sin2 i)]

K.(+ I0 _ i

radians

days

+ 3
2 e 2)

(39)

K2 = 2. 206 × 104

K4 = 1.580570

(KM) 2

× 109 (KM) 4

(40)

(41)

p- = Rp (1 + e)

Rp (KM) ] 3/21 - e

(42)

P = (2.764 X 10-6) hours (43)
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The perturbation of the argument of perigee is

_o
27r

P (24) 3 _-_ 1 -_ sin z i + 10 _-_ l + -_

I - 5 sinz i + 35 )] radians-{- sin4 i - (cos i) (6) day

(44)

and the position of perigee will be

_0 = ¢0 _ initial passage +

Iof the satellite
Number of dayssince initial passage_
of the satellite /

&
(45)

The relationship between the satellite coordinate system (X4,

X_, X 6) and the earth-centered system (X 1, Xz, X3) depends on the
attitude of the vehicle. The derivation of the transformation equations

between these two systems will be explained by a series of rotations.

(FIG 5 is an aid to visualize the physical significance of these

rotations.) First, rotate the X1, Xz, X3 coordinate system about the

X3 axis through the angle, _2. This rotation places the X7 axis on

the line of nodes.

The matrix relating the new triad to the earth-centered system

is given below in terms of the direction cosines.

cos n cos (=12 - e) cos =/2

cos (=/2 + _) cos _ cos =/Z

cos _/2 cos _/2 cos 0

or simplifying

X 1 X7

Xz = Xs

X3 X9

(46)
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cos _ sin f2 0

- sin f2 cos _2 0

0 0 i

El

Xz

X3

X7

xsi

x,{
47)

To place the base of the triad in the plane of the orbit, the XT, Xs,

X 9 system is rotated about the X7 axis through the orbital inclination

angle, i (FIG 7)

The matrix relating this system to the previous one is

1 0 0

0 cos i sin i

0 - sin i cos i

X7 X10 1

Xs = Xll

X? Xlz

(48)

Further orientation in the plane of orbit is accounted for by a

rotation about the Xlz axis. When the coordinate system is rotated

through the angle, ¢0, the Xl0 axis will be pointing toward perigee

and the Xll axis will be tangent to the flight path of the satellite

at the perigee point. This coincides with one of the desired satellite

orientations; and if the axis of the orbiting triad, which is tangent

to the flight path, is Xs, then the matrix relating the satellite axis

system to the Xl0, Xll, Xlz triad is

cos _ sin ¢o 0

- sin oo cos _o 0

0 0 1

Xlo

Xll

Xlz

X4

Xs

X6

L

(49)

Now the satellite vectors may be expressed in terms of the geocentric

coordinates by successive application of the transformation equations.

To orient the satellite so that the X5 axis is always pointing

toward the center of the earth requires only a turning of the satellite
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X9

X12

i

Xll

_Xa

+

Xto,X 7

Figure 7. Rotation of Co-ordinate System About X7 Axis
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in the plane of its orbit. The angle through which the satellite must

be rotated is measured relative to the perigee attitude of the vehicle

and, as can be seen from FIG 8 is simply = + w-- °

' 2

If the earth-oriented triad is called X13, X14, X1s as shown in

FIG 8, then the relationship between it and the perigee system is

given by the matrix

- sin w cos w 0

- cos w - sin w 0

0 0 1

X4

Xs

X6

X13

X]4 (50)

The sun orientation is more difficult to express mathematically

since the satellite must not only be turned in the plane of its orbit but

must also be elevated out of the orbital plane. These rotations will

be expressed in terms of the angles which the sun's unit vector

makes with the perigee system as defined in FIG 9. The scalar

components of the sun vector in the perigee system are

sin _ cos I_ = S i4 (51)

COS _ = S i6 (52)

and

- sin _ sin r' = s is (53)

Since the vectors in the above equations are known in the geocentric

system (equation 19 and Appendix B),the indicated vector operations

may be completed and a scalar expression obtained for the right hand

side of each equation. Using these results and the fact that 0 __< _ <___,

equations (51-53) may be solved for _ and [_.
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Fiiure 8. Earth-Oriented Satellite
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Figure 9. Position of Sun Relative to Satellite Co-ordinate System
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7[

By rotating the perigee system through the angle _ + I_ , as

shown in FIG i0, the X 5 axis is aligned with the sun's projection in

the orbital plane (FIG 9). The relationship between the new triad

(Xi6, XiT, XIB) and the perigee system is

- sin F - cos F 0

cos F - sin F 0

0 0 1

X4

Xs

X6

X16

X17

X18

(54)

To complete the alignment with the sun, the satellite must now be

elevated about the Xi6 axis through the angle, -_ - _ , so that the

Xlv axis now points directly at the sun. The axes of the triad

resulting from the last rotation are labeled Xlq, Xz0, Xzl. The

transformation between this system and the previous one is given by

the following matrix array:

I 0 0

0 sin _ cos

0 - cos _ sin

X16

X17

Xl8

Xl?

Xz0

Xzl

(55)

To aid in remembering the orientation associated with each

arithmetical subscript, the important coordinates will hereafter be

referred to by more informative subscripts as listed below.

and

(perigee system) X4, Xs, X6 = Xp, yp, Zp

(earth-oriented) X13, X14, Xls = XE.O., YE.O.,

(56)

zE.O.

(57)

(sun-oriented) Xl 9, Xao, Xzl = xs.o. , YS.O., zs.o.
(58)
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X6 ,XI8

+

X 5

____XI7

Figure I0. Rotation of Co-ordinate System About X6 Axis
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The location of the sun may be found by using the celestial sphere

concept and spherical trigonometry as shown in Reference 7. The

projection of the path of the sun on the celestial sphere is called the

ecliptic and makes an angle, _ , with the celestial equator of 23.45 °

or 23 ° 27' 8.2". Using the vernal equinox as a reference point tb.e

right spherical triangle to be solved is formed by the ecliptic, the

celestial equator, and the meridian circle passing through the sun's

position. If the right ascension in the plane of the ecliptic, g@, was

known, then the equations could be solved. The relations from

spherical trigonometry would be

tan _ = tan L@ cos _ (59}

and

sin y = sin _ sin L@ (60)

where _ is the right ascension of the sun in the plane of the equator

and _/ is the declination of the sun. The expression for L@ will be

found by use of the equation relating true anomaly to mean anomaly,

since the mean motion of the sun is well known. This equation is

(Reference 4}

5 ea (61)
v = M + Z e sin M + "_ sin ZM +

where the eccentricity of the earth's orbit is 0.0167 (Reference 5).

Since the sun completes an orbit every 365.25 days, the mean daily

motion would be

360 = 0.9856 de____gg (62
365.25 day

and the mean anomaly expressed relative to the vernal equinox would

be
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M = 0.9856 (77 + Number of days after v.e.) (63)

The number 77 appears because the passage of the vernal equinox

occurs 77 days after perihelion of the earth. However, basing the

position of the sun on the calendar introduces an error in the

calculations. The calendar neglects the one-quarter day and com-

pensates by adding a full day every four years. To locate the true

position of the sun in any given year a correction factor is added to

account for this discrepancy. The right ascension in the plane of the

ecliptic would then be

L 0 = 0.9856 (D + 77) + 1.9481 sin [0.9856 (D + 77)]

+ 0.0207sin[2(0.9856)(D + 77)] (64)

77. 617" + Number of years since leap year
4

where 77. 617" is the true anomaly of vernal equinox; and the number

of years since leap year will be 0, 1, 2, or 3. A new leap year is

not counted as four years since the last one, but as zero years. Now

L0 can be calculated, and equations 59 and 60 solved for a and T.

The relationship between the coordinates a and _', and the earth

triad, is shown in FIG 11 along with the conversion equations.

The intersection of the earth's shadow cylinder with the orbital

plane is illustrated in FIG 12 and will be described in terms of

previously defined parameters. The angle of intersection is measured

by _, the angle between the normal to the orbital plane and the sun

vector. The plane view shows elliptical shape of the locus of inter-

section and its relation to the X16, XlT, Xla triad system. The

equation of the earth)s shadow ellipse is

as / bs /
1 (65)
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Figure Ii. Position of Sun Relative to Earth Co-ordinate System
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RE
where as - and b s = R E (FIG 12). Or using the angle

COS _

@ and the radius R s, measured from the center of the earth to any

point on the shadow ellipse, the equation may be expressed as

Rs - RE2 (66)
cos t O (1 - cos z _) + cos z

The position of the shadow ellipse in the orbital plane is defined

relative to perigee by the angle I_ .

The equations of the two ellipses in the orbital plane (the shadow

ellipse and the satellite orbital ellipse) are now known. Positions on

satellite orbit are specified by the true anomaly, v, while the angle

@ locates points on the shadow ellipse. From FIG 13 it can be seen

that these angular coordinates are related by the following equation

v = o + =/z- F (67)

The ingress and egress points are two of the four possible inter-

sections of these ellipses, and may be found by simultaneously

solving their equations. This has been accomplished on an electronic

computer by simultaneously computing the two radii and comparing

them. By limiting the comparison to the values of w corresponding

to a @ range of 0 < @ < 7r, the proper intersections are obtained

(FIG 14).

EXAMPLE PROBLEM

As an example, the incident energy on a cylindrical satellite

with hemispherical bulkheads will be calculated for all three vehicle

orientations. The thermal heating depends on the intensity of the

radiation and the view factor between the object and the source. The

intensities are known and the view factor equations may be evaluated

by double integration. The input data needed to perform the integration

consists of an expression for the satellite surface normal and specifi-

cation of the orbital parameters.
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X5

!

XI7

--x 4 To Perigee

Figure 13. Angular Relations in the Orbital Plane
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/ _ / _Z----Earth's Shadow
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Figure 14. Ingress and Egress of the Earth's Shadow
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The surface normal equations will be derived in detail for the

satellite oriented tangent to the flight path at perigee. The other

derivations are similar, and the results are given in Appendix C.

Consider the cylinder oriented as shown in FIG 15. The equation
for its surface would be

d 2
(Xp) z + (Zp) z - 4 (68)

and the unit normal would be (see equation 11)

--m --m

Nz = (ip) (Xp) + (kp)(Zp)

d/2
(69)

or using the coordinate transformation

Xp = d/2 cos _ (70)

Zp = d/2 sin

The surface normal then becomes

_z : (%) COS _ + (k_)sin (TZ)

The relationship between the satellite coordinate system and the

earth-centered triad is given by equations (B4-B6) of Appendix B.

Substituting those expressions into equation 7Z gives
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Representatlwt Line

in the _, Zp Plane

Zp

XP _ d

Yp

Figure 15. Co-ordinate System for Description of Cylindrical Satellite

Surface
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N z = (ii) cos [, cos _0 cos _ - sin _ cos i sin _ +

sin _ Isis i sin Q] } +

(iz) cos [, cos _ sin_2 + sin ¢0 cos i cos _2

- sin [, [sin i cos Q]}+

(i3) cos _ sin ¢_ sin i + sin _ [cos i]}

+

(73)

The hemispherical tank ends will be described by placing limits

on the equation of a sphere. The end nearest the origin of the

satellite coordinate system (negative hemisphere) would be part of

d
a sphere of radius _ whose equation is

(Xp)Z + (yp)Z + (zp)Z = dZ/4 (74)

and the unit normal would be given as (see equation 1 1)

N-_ = (ip) (Xp) + (jp)(yp) + (kp)(zp) (75)

d/Z

To restrict the surface to a hemisphere, it is convenient to switch

to spherical polar coordinates as shown in FIG 16. Then the unit

normal is

Nz = sin dd sin q5 (ip) + cos d# (jp) + sin ¢> cos _b (kp) (76)



45

Zp

/ Z I/
/ /

\ t

_-- yp

Figure 16. Co-ordinate System for Description of Negative Hemispherical
Bulkhead
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and the limits which define the hemisphere are

o<_ <27r (77)

r12 < _ < 7r (78)

To describe the other hemispherical end (positive hemisphere)

the origin of the coordinate axes is shifted to Xp = 0, yp = L,

Zp = 0, where L is the length of the cylindrical portion of the

satellite. Denoting this new system as shown in :FIG 17, the unit

normal here is

Nz = sin bt sin g) (izz) + cos p (iz3) + sin p cos _ (i24) (79)

and

ip = izz jp = iz3 kp = iz4 (80)

The angular limits are

o < _ < 2_ (81)

o < _ < _/2 (82)

The equations for the hemisphere unit normals are expressed in

terms of the earth-centered coordinate system just as the unit

normal to the cylinder was giving

-{ [ ]Nz = (i,) sin # sin _ cos ¢0 cos f_ - sin ¢o cos i sin f_

cos ¢_ [- sincocos f_ - cos ¢_cos i sinf2]

cos qJ sin _b [sin i sinf/]} +

+

+
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Figure 17. Co-ordinate System for Description of Positive Hemispherical
Bulkhead
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and

(iz) [sin _ sin _ [cos ¢_sin_2 + sinc_cos icosl'_] +

cos $ [cos ¢_cos icosl2 - sine_sini2]

cos %b sin _ [- sinicosf2] } + (83)

(i3) sin %b sin _ sin ¢_ sin i +

cos _ sin _ [cos i] }

cos [cos sini]+

Nz = (il) sin }z sin p cos _ cos _ - sin ¢_ cos i sin f_ +

cos p [- sin 0_cos fl - cos _ cos i sin R] +

cos _ sin p [sin i sinai} +

(iz) Isin _ sin P

cos p

]

cos sin f2 + sin cos i cos _1 +
&0

(84)

[COS ¢o cos i cos n - sin _ sin f2] +

cos _ sin p [- sin i cos _] } +

(i3) sin _t sin p sin w sin i + cos p [cos _sini] +

cos _ sin p [cos i]}

The orbit selected has the following pertinent characteristics

i = 28 ° 45'

e = 0

a = 4118.7 miles (85)
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Launching will be assumed to be made from Cape Canaveral on

May 11, 1962, in the south-east direction. The geographic co-

ordinates of the Cape are

latitude, Z8 ° 45' N

longitude, 80 ° 34' W

From this information, the "launch triangle" may be solved using

equations 29 through 31; the results are

coL = _r/Z k L = 7r/Z

_L = r/2

(87)

Assuming a downrange cutoff of 15 ° gives a value for the argument of

perigee of

co = 105 °

from equation 3Z. The other parts of the perigee triangle are found

from equations 33 through 35 and are

5 = Z7° 41' (89)

= 107o (90)

/3 = 81° 55' (91)

The local sidereal time at midnight on May 11, 196Z, is given in

Reference 5 as

LST = zz8 ° 31, zz,, (9z)
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and the right ascension of the ascending node is then

= 228 ° 31' 22" - 90 ° = 138 ° 31' 2Z" (93)

from equation 36.

Since this is a circular orbit, equation 37 reduces to

R = a (94)

The perturbations of the orbital parameters are calculated from

equations 39 through 44; these give the position of the ascending node

as

_2 = 138 ° 31' ZZ" + (-7.6725) (Numbers of days since

initial passage of the

satellite)

(95)

and the argument of perigee varies according to

¢o = 105 ° + (lZ. 423)(Nurnber of days since initial

passage of the satellite)

(96)

The ingress and egress points of the earth's shadow are found to

be at v = Z70. Z ° and 57.7 °, respectively, for the initial orbit.

The position of the satellite in terms of earth-centered coordinates,

Oz and Ez, is needed to compute the vector r,z (equation 9). The

equations for these angles were given with FIG 3 and are

_ X3
cos _z R (97)

Xz
sin Bz = (98)

R sin _z
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cos 8z - Xl
R sin _z

(99)

The relationship between the earth-centered coordinates, X 1, Xz,

and X3, and the perigee system may be found from equations 47

through 49. Substituting this information along with the fact that

xp = Rcos_

yp = -R s in v

Zp = 0

in the plane
of orbit

(ioo)

into (97), (98), and (99) gives

cos _z = (sin i sin ¢0) cos v + (sin i cos ¢_) sin v (lO1)

s in Oz ] COS V= sin _ cos ¢_ + cos _ cos i sin ¢_ sin T_z

+ cos f2 cos i cos co - sin f_ sin _
sin _z

(lOZ)

and

cos 8z ] COS V
= cos _ cos ¢o - sin f2 cos i sin 0_

[- cos f_ sin _ + sin f_ cos i cos _

sin _z

sin _z

(lO3)

The sine of _z is given by

sin _z = 1/1 - (cos ,]z) z
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since _z always lies between zero and 7r.

The components of the other vectors needed in the calculations

of the view factors may be determined from the above equations and

data. To integrate the view factors the areas Azi must be chosen.

This selection is easy for the cylindrical part of the satellite since

the direction of Nz does not change with axial distance (see equation

73) but only with angular position, _. Therefore, if the cylinder is

approximated by a circumscribed polygon, N-_ will have a constant

direction over the surfaces of any side. The hemispherical ends

present more of a problem since the unit normal varies with both

angular coordinates. By approximating the hemispherical surface

with tangent planes the surface normal is made constant over the

areas. Using methods such as these, the surfaces of a satellite may

be approximated to any degree of accuracy desired by choice of the

sizes of area, Azi. The resulting integrals have been programmed

in a general manner on the IBM 7090, using the numerical method of

Gauss. Typical curves for the planetary, albedo and solar radiation

view factors are shown in FIG 18 through 20 for each orientation.

A detailed description of the irradiation may now be determined,

using equations 13, 17, and 24. A typicalcurve showing the earth

planetary radiation incident on the cylindrical part of the satellite,

at _ = 0, is presented in FIG 21. The solid line gives the heat flux

for a non-spinning vehicle and the dotted line for a spinning satellite.

The total incident energy on the cylinder is listed in Table 3 according

to the source of the radiation and the orientation of the satellite. The

same information is given in Tables 4 and 5 for the positive and

negative hemispheres, respectively.

RESULTS AND DISCUSSION

A check on the view factor equations, as derived in this report,

may be obtained for certain simple cases. Smolak in Reference 3

gives the view factor equations for planetary radiation to a flat plate

parallel or perpendicular to the localhorizon. If the plate is

perpendicular to the local horizon this equation is

7r %/1 + Zpp/h - (1 + pp/h) 2

(105)
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TABLE 3

Cylinder

Source of

Radiation

Incident Thermal Energy for One Orbit ---_
-1TDL

Satellite Orientation

Tangent Flight

Path at Perigee
Toward Earth Toward Sun

Earth 35 32 36

Sun 123 Iii 0

Albedo 21 19 22

Total 179 162 58

Btu

ft 2
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TABLE 4

Positive Hemisphere

Source of

Radiation

Incident Thermal Energy for One Orbit Q Btu
2T_R--_

Satellite Orientation

Toward Earth Toward Sun
Tangent Flight

Path at Perigee

Earth 36 58 36

Sun 112 64 191

Albedo 20 35 16

Total 168 157 243
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TABLE 5

Negative Hemisphere

Source of

Radiation

Q BtuIncident Thermal Energy for One Orbit ---_---_
2-1TR z

Satellite Orientation

Toward Earth Toward Suntangent Flight

Path at Perigee

Earth 24 14 36

Sun 86 131 0

Albedo 24 8 27

Total 134 153 63
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(The horizontal view factor has previously been given as equation 27. )

In FIG ?2 the results of the numerical integration of the earth view

factor are shown for a flat plate oriented tangent to the flight path

at perigee. The values given by the Smolak's formulas are shown as

circle symbols in FIG Z2 and agree exactly with the predictions of

this report.

To determine the intensity of the earth's planetary radiation, a

uniform black body temperature is assumed for the entire surface.

This assumption is necessary since the local temperature is a function

of many variables and is not predictable. In Reference 8, Francis

made a more detailed analysis of the earth's radiosity. Using the

meterological data of other researchers, a mean environment was

obtained for each locale, at various times of the year, and the

resulting irradiation of a plane surface was studied. It was found

that the local variations from the uniform temperature results were

quite high for polar orbits (-17_0 to + 33%o) but agreed within 5% for

equatorial orbits and average conditions on the earth.

The benefits to be gained from controlling the incident energy

through vehicle orientation may be determined by studying the results

of the example problem. By orienting the satellite toward the sun,

the total heat flux to the cylinder is reduced by 120 Btu/ft z each orbit.

However, the. incident energy to the positive hemisphere is increased

by 76 Btu/ft 2 and the heat load to the negative hemisphere is reduced

by 50%. Consequently, it is very advantageous from a thermal view-

point to orient the satellite toward the sun. Orienting the vehicle

toward the earth does not offer much, since the proximity of the earth

reduces the effectiveness of the satellite as a shield.

The methods outlined in this report may be extended easily to

predict the incident energy on §atellites of other celestial bodies. The

major problems would be locating the orbital plane and sun relative

to the body. However, the extension to a lunar satellite is very simple

since the sun and the vernal equinox have almost exactly the same

direction at the moon as at the earth.
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APPENDIX A

VIEW FACTORS

The standard equation for the radiation emitted by black body Al

which falls on the body Az is

--_ 0-Tl 4 f f cos Y1 cos Yz
Ql-_z :

AI Az

The integral in this equation is usually combined with either the

area of the receiver, or the emitter, and is referred to as the view

factor. If the area of the emitter is used, the physical meaning of the

view factor is more obvious. Multiplying the numerator and denominator

of the R.H.S. of the equation by AI gives

Q!-_ Z = ¢Yrl 4 AI FIZ (2A)

where

1 f f c°s Y1 c°s Yz dAl d-Az (3A)FIz = 7rAl l__-_ ,z
Irl21

Al Az

The term QrT14 AI is the total energy radiated by area A1 and,

therefore, the view factor represents the fraction that is intercepted

by Az. However, it is equally correct to base the view factor on the

area of the receiver, if the numerator and denominator of the R.H.S.

of equation 1A are multiplyed by Az. Then

Ql-_z = _T14 Az Fzl (4A)
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where

1 _ f cos yl cos yz dA1 dAz (5A)
Fzl - lrAz r --_ IZ

1_121AI Az

and the order of the subscripts on the view factor is reversed to

indicate that the reference used in the definition is the area Az. A

comparison of equations 5A and 3A shows the following relationship

to exist:

Az Fzl = AI FIz (6A)

This is known as the reciprocity theorem.

In this report the area of the receiver has been used to define

the view factor and it is assumed that the integration is piecewise

independent of the area Az. That assumption simplifies equation 5A

to

1 f cos Y1 cos Yz
Fzl J i.._ , z dAl (TA)_T

i-_-xziA1

The equation for the thermal radiation received is unchanged, retaining

the form of equation 4A.

Another identifying property of the view factor is its numerical

value which ranges from zero to plus one. It should also be recognized

from studying the form of the radiation heat transfer equation, since

the product of the intensity of the source and the view factor gives the

incident radiant energy per unit area and time.
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APPENDIX B

COORDINATE TRANSFORMATION

Using the transformation equations 47 through 49, the unit vectors

of the satellite triad may be expressed in terms of the geocentric co-

ordinate system. The method consists of successively applying these

equations until the desired result is obtained. Consider the ip vector.

ip = cos co (il0) + sin _ (ill) + (0)(ilz ) (IB)

or substituting for i,0, and ill, then

ip = cos _ (1)(iv) + (0)(i8) + (0)(i9) +

sin _ (0) (i7) + cos i (i8) + sin i

(2B)

Expressing 17, i8, 19 in terms of earth triad gives

ip ___
cos o_ cos _ (i,) +

sin ¢o cos i

sin co sin i

sin _ (iz) + (0) ( +

[ _-sin _(i,) + cos f2(iz) + (0) ( +

(0) (i,) + (0) (iz) + (1) ( )

(3B)

which simplifies to

lp = cos oa cos _ - sin f_ sin o_ cos i]

cos co sin f2 + sin _ cos i cos f21

(i,) +

(i2)+ (4B)

[ Isin _ sin i (i3)



6_

as

and

The remaining unit vectors are derived similarly and are obtained

- [ ]-jp = - sin _ cos _ - cos 0_ cos i sin _ (il) +

[ l-cos _o cos i cos _2 - sin _o sin _ (iz) +

[ ] -cos co sin i (i3)

- [ ]- [ ]-kp = sin i sin [2 (i,) + - sin i cos _ (ia) +

[ l-cos i (i3)

(5B)

system by similar methods.

(6B)

The earth-oriented triad may be expressed in terms of the perigee

The results are

iE.O. = - sin v {ip) + cos v (jp) (7B)

= - cos v ..(ip) - sin v -.-(Jp)JE. O. (8B)

kE. O. = kp (9B)

The equations for the sun-oriented triad are

is.o. = - sin I" (ip) - cos i-"(jp) (10B)

and

iS. O. sin _ cos 1_ (ip) - sin _ sin r' (jp) + cos _ (kp)

(liB)

ks. O. = - cos _ cos 1_ (ip) + cos _ sin I-'(jp) + sin _(kp)

(IZB)
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APPENDIX C

SATELLITE SURFACE UNIT NORMALS

The surface unit normals for a cylindrical satellite with hemi-

spherical ends,

Cylinder:

Nz = - sin v

cos v

oriented toward the earth, are given below

[ I _cos [, cos ¢o cos _ - sin ¢0 cos i sin f_ (il) +

cos _ cos _ sin _2 + sin co cos i cos fl (iz) +

[ I-cos _ - sin co cos _ - cos co cos i sin f2 (il) +

[ I-cos _ cos co cos i cos _2 - sin co sin _ (iz) +

(lC)

,,n_ [_,n,s,nO]

Positive Hemisphere:

[ ]_(il) + sin _ - sin i cos _ (iz)

Nz cos v sin V sin p - sin co cos f_ - cos co cos i sin f] (i,)

cos co cos i cos f2 - sin co sin _2 (iz) +

+

+
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- COS v cos p

- sin v cos p

cos_ sin p [[

[_n_s_n_l_)I+

[ [COS co COS _ - sin co cos i sin f2

cos _ sin _ + sin co cos i cos

[_n_n_](_II+

cos _ cos i cos

[_os_n_]_I
sin i sin _ (il) +

(il) -_

(i2) +

Negative Hemisphere:

Nz = COS v sin _ sin _p { - sin co cos _ - cos co cos i sin (il) +

- sinv sin_ sin _ [

I ]-cos co cos i cos _ - sin co sin _ (iz) +

]-cosco cos _ - sin co cos i sin _ (ii) +

cos co sin_ + sin co cos i cos _ (iz) +

cos cocos i sin _ ]

l-- sin co sin i-_ {iz) +

+

[-_n_o_] (_ +

(zc)

(i,) +

cos co cos _ - sin _ cos i sin _ (il) +

cos co sin _ + sin co cos i cos _ (i_.) +
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-cos v cos dp {[

cos co sin _ +

[sin 0J sin i]

-_n_o_ {{-s_n_cos_-

_._cos _oCOS _ - sin _o cos i sin _ (il) +

sin _o cos i cos f_ (iz) +

i-cos oa cos i sin _ (il) +

[ I-COS _ COS i COS fZ - sin co sin f2 (iz) +

{[ ]_ { I-cos d# sin _ sin i sin f_ (il) + - sin i cos _ (iz)

[_o__}(_)}

The equations for the sun-oriented vehicle are given below.

+

Cylinder:

Nz = - sin F cos {[ J-cos _0cos _ - sin ¢o cos i sin f2 (il) +

[ l-cos co sin _ + sin co cos i cos _ (iz) +

sin _ sin i (i3) +

- cos F cos _ - sin _0cos _ - cos oJ cos i sin _ (il) +

I l-cos c_ cos i cos _ - sin _o sin _ (iz) +

[ ]-}cos _ sin i {i3} +
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- sin _ cos _ cos r"

sin_ cos _ sin 1-"

sin _ sin

cos f_ - sin co cos i sin _ (il) +

sin fl + sin cocos i cos fl (iz)+

sin co sin i (i3) + (4C)

[ ]-- sin co cos _ - cos co cos i sin _ (il) +

[ l-COS coCOS i COS fl - sin co sin _ (iz) +

I[ l [sin i sin fl (il) + - sin i cos fl (iz) +

Positive Hemisphere:

Nz = - sin iP sin_ sin p

- cos F sin_ sin p

sin _ cos ITM cos p {

cos _0 cos _ - sin _ cos i sin _2 (il) +

[ I-cos co sin _ + sin co cos i cos _ (iz)+

- sin 0_ cos fl - cos _ cos i sin fl (i,) +

COS

COS

COS

Icos co sin _ +

cos i cos fl - sin 0_ sinfl (iz) +

_ sini] (_)} +

I-_0 COS fl - sin c0 cos i sin fl (il) +

l-sin _ cos i cos fl (iz) +

[sin _ sin i] (_)} +
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{[ 1 _ [ I _cos _ cos p sin i sin _ (il) + - sin i cos _ (iz) +

{[ 1 _- sin _ sin F cos p - sin co cos f_- cos co cos i sin f_ (i,) +

[ 1 -cos co cos i cos $2 - sin co sinf_ (iz) +

cos co sin i]

__o__o__o___n_{[_o_
COS

s in

cos_ sinFcos _sin p {[-

[_

co cos _-sin co cos i sin _ (i,) +

co sin _ + sin co cos i cos _ (iz) +

cosini] (F,I} +

sin co cos f2 - cos co cos i sin f_ (il) +

os co cos i cos _- sinco sin_ (iz) +

sin _ cos _ sin p

[cos co sin i ](_)}

[[sinisi_nl_i,_+ [-

+

_._
sin i cos _ (iz) +

Negative Hemisphere:

Nz = - sin r' sin %5 sin q5 {[ 1_cos co cos _ - sin co cos i sin _ (il) +

[ l-COS co sin _ + sin co cos i cos f_ (iz) +

[sinco sini] (_)} +



- cos _ sin

sin _ cos F cos

cos _ cos ,

- sin _ sin I" cos 4?

-cos _ cos Fcos_ sin_b {

cos _ sin 1-' cos _? sinqb
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sin -sin _ cos f2 - cos _o cos i sin fl (il) +

[ 1"COS o_ COS i COS fi - sin co sini-I (iz) +

cos co sin i (i3) +

{I ]-cosco COS i'l- sin co cos i sin i'l (ii) +

[ ]-cosco sin fl + sin co cos i cos _ (iz) +

I[ ]" [ I_sin i sin i-I (il) + - sin i cos _ (iz) +

II ]-- sin _ cos _I - cos _o cos i sin II (il) +

[ ]"Cos 0_ COS i COS fl - sin co sin _ (iz) +

[ I'}COS u_ sin i (i3) +

cos co cos fl - sin _ cos i sin _l (il) +

cos ¢0 sin _ + sin _ cos i cos fl (iz) +

[sin u)sin i] (_)} +

{ [-sin co cos _- cos 0_ cos i sin _-I (il) +

cos _ cos i cos fl - sin co sin fl (iz) +

cos o_ sin i (il) +
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{[ [sin _ cos _ sin _) sin i sin _ (il) + - sin i cos 12 (i2) +
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